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Abstract. The known Holstein–Primakoff and Dyson realizations of the Lie algebrasl(n+1),
n = 1, 2, . . . in terms of Bose operators are generalized to the class of the quantum algebras
Uq [sl(n+ 1)] for any n. It is shown how the elements ofUq [sl(n+ 1)] can be expressed vian
pairs of Bose creation and annihilation operators.

In this paper we write down an analogue of the Dyson (D) realization and of the
Holstein–Primakoff (HP) realization for the quantum algebraUq [sl(n + 1)]. Initially both
the HP and D realizations were given forsl(2) [1, 2]. The generalization forgl(n+ 1) is
from Okubo [3]. In [3] the elements ofgl(n+ 1) are expressed as functions ofn pairs of
Bose creation and annihilation operators (CAOs), namely operatorsa±1 , a

±
2 , . . . , a

±
n , which

satisfy the known commutation relations

[a−i , a
+
j ] = δij [a+i , a

+
j ] = [a−i , a

−
j ] = 0 i, j = 1, . . . , n. (1)

This realization is ‘more economical’ than the known Jordan–Schwinger realization, which
expressesgl(n+ 1) via n+ 1 pairs of Bose CAOs.

The motivation in this work stems from the various applications of both the HP and of
the D realizations in theoretical physics. Beginning with [1, 2] the HP and D realizations
were constantly used in condensed matter physics. Some other early applications can be
found in Kittel [4] (more recent results are contained in [5]). For applications in nuclear
physics see [6, 7] and references therein, but there are, certainly, several other publications.
In view of the importance of the quantum algebras for physics, one could expect that the
generalization of the D and HP realizations to the case of quantum algebras may be of
interest too. In fact this is the case for the only knownq-analogues of the HP realization
to date, namely those ofUq [sl(2)] andUq [sl(3)] [8–15].

Initially we recall the definition ofUq [sl(n+1)] in the sense of Drinfeld [16]. LetC[[h]]
be the complex algebra of the formal power series in the indeterminateh, q = eh/2 ∈ C[[h]].
ThenUq [sl(n+1)] is a Hopf algebra, which is a topologically freeC[[h]] module (complete
in theh-adic topology), with generators{hi, ei, fi}i=1,...,n and

(1) Cartan relations

[hi, ej ] = (2δij − δi,j−1− δi−1,j )ej (2a)

[hi, fj ] = −(2δij − δi,j−1− δi−1,j )fj (2b)

[ei, fj ] = δij q
hi − q̄hi
q − q̄ . (2c)
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(2) Serre relations

[ei, ej ] = 0 [fi, fj ] = 0 |i − j | 6= 1 (3a)

[ei, [ei, ei±1] q̄ ]q = [ei, [ei, ei±1]q ] q̄ = 0 (3b)

[fi, [fi, fi±1] q̄ ]q = [fi, [fi, fi±1]q ] q̄ = 0. (3c)

Throughout [a, b] = ab − ba, [a, b]x = ab − xba, q̄ = q−1. We do not write the other
Hopf algebra maps(1, ε, S), since we will not use them. They are, certainly, also a part
of the definition.

The D and HP realizations are different embeddings ofUq [sl(n + 1)] into the Weyl
algebraW(n). We define the latter as a topologically freeC[[h]] module and an associative
unital algebra with generatorsa±1 , . . . , a

±
n and relations (1).

Remark. In the physical applications it is often more convenient to considerh and q as
complex numbers,h, q ∈ C. Then all of our considerations remain true providing thatq is
not a root of 1. The replacement ofq ∈ C[[h]] with a number corresponds to a factorization
of Uq [sl(n+1)] andW(n) with respect to the ideals generated by the relationq = number.
The factor-algebrasUq [sl(n + 1)] andW(n) are complex associative algebras. However,
the completion in theh-adic topology has left a relevant trace: after the factorization the
elements ofUq [sl(n + 1)] and ofW(n) are not only polynomials of their generators. In
particular the functions of the CAOs, which appear in both the D and HP realizations (see
(4) and (10) below) are well defined as elements fromW(n).

We are now ready to state our main results. Let [x] = qx−q̄x
q−q̄ , Ni = a+i a

−
i and

N = N1+ . . .+Nn.

Proposition 1 (D realization).The linear mapϕ : Uq [sl(n + 1)] → W(n), defined on the
generators as

ϕ(h1) = p −N −N1 ϕ(hi) = Ni−1−Ni i = 2, 3, . . . , n (4a)

ϕ(e1) = [N1+ 1]

N1+ 1
[p −N ]b−1 , ϕ(ei) = [Ni + 1]

Ni + 1
b−i b

+
i−1 i = 2, . . . , n (4b)

ϕ(f1) = b+1 ϕ(fi) = [Ni−1+ 1]

Ni−1+ 1
b+i b

−
i−1 i = 2, . . . , n (4c)

is a morphism ofUq [sl(n+ 1)] into W(n) for anyp ∈ C.

The proof is straightforward. In the intermediate computations the following relation is
useful:

f (N1, . . . , Ni, . . . , Nn)a
±
j = a±j f (N1± δ1j , . . . , Ni ± δij , . . . , Nn ± δnj ) (5)

where f (N1, . . . , Ni, . . . , Nn) ∈ W(n) is a function of the number operators
N1, . . . , Ni, . . . , Nn.

We have derived the D realization (4) on the ground of an alternative to the Chevalley
definition of Uq [sl(n + 1)] [17]. This derivation together with the expressions for (the
analogues of) all Cartan–Weyl generators via CAOs will be given elsewhere.

Similarly as forsl(n+1), the D realization defines an infinite-dimensional representation
of Uq [sl(n+ 1)] in the Fock spaceF(n) with an orthonormalized basis

|l〉 ≡ |l1, . . . , ln〉 = (a+1 )
l1 . . . (a+n )

ln

√
l1! . . . ln!

|0〉, l1, . . . , ln = 0, 1, 2, . . . . (6)
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If p is a positive integer,p ∈ N, the representation is indecomposible: the subspace

F1(p; n) = lin.env.{|l1, . . . , ln〉|l1+ . . .+ ln > p} (7)

is an invariant subspace, whereas its orthogonal compliment

F0(p; n) = lin.env.{|l1, . . . , ln〉|l1+ . . .+ ln 6 p} (8)

is not an invariant subspace. Ifp /∈ N, the representation is irreducible. In all
cases, however, and this is the disadvantage of the D realization, the representation of
Uq [sl(n + 1)] in F(n) is not unitarizable with respect to the antilinear anti-involution
ω : Uq [sl(n+ 1)] → Uq [sl(n+ 1)], defined on the generators as

ω(hi) = hi ω(ei) = fi i = 1, . . . , n. (9)

In order to ‘cure’ this disadvantage we now introduce the HP realization.

Proposition 2 (HP realization).The linear mapπ : Uq [sl(n+ 1)] → W(n), defined on the
generators as

π(h1) = p −N −N1 π(hi) = Ni−1−Ni i = 2, 3, . . . , n (10a)

π(e1) =
√

[N1+ 1]

N1+ 1
[p −N ]a−1 π(ei) =

√
[Ni−1]

Ni−1

[Ni + 1]

Ni + 1
a−i a

+
i−1

i = 2, 3, . . . , n (10b)

π(f1) =
√

[N1]

N1
[p −N + 1]a+1 π(fi) =

√
[Ni−1+ 1]

Ni−1+ 1

[Ni ]

Ni
a+i a

−
i−1

i = 2, 3, . . . , n (10c)

is a morphism ofUq [sl(n + 1)] into W(n) for any p ∈ C. If p ∈ N, then F0(p; n)
and F1(p; n) are invariant subspaces;F0(p; n) carries a finite-dimensional irreducible
representation; it is unitarizable with respect to the anti-involution (9) and the metric is
defined with the orthonormed basis (6), providedq > 0.

The proof is straightforward: the verification of the defining relations (2) and (3) can
be carried out on a purely algebraic level. The circumstance thatF(n) is a direct sum of
its invariant subspacesF0(p; n) andF1(p; n) is due to the the factor

√
[p −N ] in (10b)

and
√

[p −N + 1] in (10c). If q > 0, then (( , ) denotes the scalar product)

(π(hi)|l〉, |l′〉) = (|l〉, π(hi)|l′〉) (π(ei)|l〉, |l′〉) = (|l〉, π(fi)|l′〉)
∀|l〉, |l′〉 ∈ F0(p; n) i = 1, . . . , n.

Therefore the representation ofUq [sl(n+ 1)] in F0(p; n) is unitarizable.
Let us note that the HP realization (10) ofUq [sl(n+1)] can also be easily expressed in

terms of deformed oscillator operatorsã±i , Ñi , i = 1, . . . , n, namely operators which satisfy
the relations [18–20]:

[ã−i , ã
+
j ]q = δij q−Ñi [Ñi, ã

±
j ] = ±δij ã±j [ã±i , ã

±
k ] = [Ñi, Ñk] = 0 i 6= k.

(11)

From (10) and the relations between the deformed and the nondeformed operators [21]

ã−i =
√

[Ni + 1]

Ni + 1
a−i ã+i =

√
[Ni ]

Ni
a−i Ñi = Ni (12)
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one obtains aq-analogue of the HP realization for anyn:

π(h1) = p − Ñ − Ñ1 π(hi) = Ñi−1− Ñi i = 2, 3, . . . , n (13a)

π(e1) =
√

[p − Ñ ]ã−1 π(ei) = ã−i ã+i−1 i = 2, 3, . . . , n (13b)

π(f1) =
√

[p − Ñ + 1]ã+1 π(fi) = ã+i ã−i−1 i = 2, 3, . . . , n. (13c)

To the best of our knowledge suchq-deformed analogues of HP realizations are only
available so far forUq [sl(2)] [8–14] and forUq [sl(3)] [15].

Finally, by adding to the generators ofUq [sl(n + 1)] an additional central elementI ,
and settingϕ(I) = π(I) = p, one obtains D and HP realizations ofUq [gl(n+ 1)].
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